
R E S I S T A N C E  O F  F I B R O U S  F I L T E R S  IN A S L I P  F L O W  

Y u .  M.  G l u s h k o v  

The r e su l t s  of expe r imen t s  on m e a s u r e m e n t  of the r e s i s t a n c e  of g l a s s - f i b e r  f i l te rs  and model f i l te rs  
made of pa ra l l e l  cy l inders  to the flow of r a r e f i e d  a i r  a re  descr ibed.  The exper imen ta l  data a re  comp a red  
with Kuwabara ' s  theory  [3]. This  compar i son  p e r m i t s  calculat ing the momen tum exchange coefficients  of 
gas  molecules  with the su r face .  

1. It  was  shown in [1, 2] that  in the region of s e l f - p r e s e r v i n g  sl ip flow the r e s i s t a n c e  of f ibrous f i l -  
t e r s  Ap as a function of the p r e s s u r e  of a gas  flow p is desc r ibed  by the equation 

APu A [ ~ ) - 7 1  
- \ i  + ( 1 . 1 )  

where  A and B a re  constants  for  a given f i l te r  and given gas ,  u is the veloci ty  of the gas  flow in front  of 
the f i l t e r .  

The functional dependence of the p a r a m e t e r  A on the physica l  c h a r a c t e r i s t i c s  of the f i l ter  and gas 
flow was studied in [3-5]. 

It  was  found that  

A = 4~h~ / <a% k (aT), k (cz~) ~ - -  0.5 la ~7 -}- a7 - -  0 .25~7  ~ - -  0.75 ( 1 . 2 )  

Here  h is the th ickness  of the f i l te r ,  a is the rad ius  of the f iber ,  ~ is the port ion of the f i l ter  volume 
occupied by f ibe r s ,  # is the v i scos i ty ,  and 7 is a s t ruc tu re  coefficient.  

In conformity  with [3, 5] 

= ~ ( 1 . 3 )  

for  a homogeneous s y s t e m  of pa ra l l e l  cy l inders  and 

y = 2 <a) 2 /  g <a ~} (1o4)  

for  a po lyd i spe r sed  fan model* (the angular  b r a c k e t s  denote averaging) .  

It  is cons ide red  [5] that  the fan model  is a good approximat ion  to r ea l  homogeneous f i l t e r s ,  the f ibers  
in which a r e  a r r a n g e d  randomly  and homogeneously (equivalently) in pa ra l l e l  planes normal  to the vec to r  
of the mean  flow veloc i ty .  

Following [3, 6, 7], we can wr i te  the theore t ica l  express ion  for  r e s i s t a n c e  of a monod i spe r sed  f i l te r  
whose f ibe r s  exper ience  a Kuwabara  sl ip flow in the f o r m  

Ap f i -}- 2~a -1 
u = A i t  [ _}_ 2~a-1 [i -[- (p (aT)k-l(aT)] ~ (1.5) 

where  q ~ ( a y ) = - a y +  0.5a2~ 2 +0.5,  ~ is the sl ip coefficient ,  and A is defined in (1.2'). 

*A. A. Kirsh ,  Invest igat ions  in the Field of F ibrous  Aeroso l  F i l t e r s ,  Disser ta t ion  for Candidate of Chem-  

ical  Sciences Degree ,  Moscow, 1968. 
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T A B L E  1. E x p e r i m e n t a l  Da ta  on the R e s i s t a n c e  of Model  
and G l a s s - F i b e r  F i l t e r s  

cr N h <a>. I0 ~ Ba A0" 104 A.  IO* 

0.0057 t2 85 0.627 0.549 0.562 0.7 
0.0t78 t t  85 0.885 1.54 t .47 0.697 
0.048 12 85 1.25 5.0 5.07 0.705 
0.376 t l  t75 1.82 90.8 47.6 
0. 00762 0. 338 t.  57 22.5 241 244 0.77 
0.0171 0.i54 1.57 28.8 284 310 0.79 

F o r  ~a -1-* 0 Eq.  (1.5) i s  s i m p l i f i e d  and  a s  a p p l i e d  to p o l y d i s p e r s e d  f i l t e r s  has  the  f o r m  ( see  A p p e n -  

dix 1) 

Ap 4~h~ i <a> ~(a~) j-1 
u -- <a~>k(~7) I+% <a%k(aT) (1.6) 

Equation (1.6) is outwardly similar to empirical expression (1.1) and reveals the functional depen- 
dence of B on the physical characteristics of the filter and gas flow. 

The slip coefficient of gas ~ near a flat wall was estimated in a number of works [8, 9]. For a gas 
model of solid elastic spheres it was found that 

= (2~ -I- t )  t . 0 9 l  

l = 9 / 0 .499 pc, c = (2kT / am)'/" (1.7) 

H e r e  p i s  the  g a s  d e n s i t y ,  k i s  the  B o l t z m a n n  c oe f f i c i e n t ,  T i s  t e m p e r a t u r e  ~ m is  the  m a s s  of the  
g a s  m o l e c u l e ,  and  a i s  the  m o m e n t u m - e x c h a n g e  c o e f f i c i e n t  [10]. 

F o r  a r e a l  g a s ,  a c c o r d i n g  to  [11], the  n u m e r i c a l  c o e f f i c i e n t  in (1.7) shou ld  be w i th in  1 .09 -1 .18 ,  w h e r e  
the  v a l u e  1.18 c o r r e s p o n d s  to  a g a s  of M a x w e l l i a n  m o l e c u l e s  [9l. If  we a s s u m e  tha t  (1.7) ho lds  t r u e  fo r  a 
r e a l  g a s  n e a r  a c y l i n d r i c a l  s u r f a c e ,  t hen  c o n s t a n t  B in (1.1) w i l l  have  the f o r m  

/ 2 1) 2.t8 i <a> qD (aT) 
= ( - S - -  ~176 <--~ k (~) (1.8) 

w h e r e  P0 i s  the p r e s s u r e  fo r  w h i c h  l 0 i s  c a l c u l a t e d  by (1.7).  

We n e e d  note  tha t  c o n s i d e r a t i o n  of f l u c t u a t i o n s  of the  p o r o s i t y  of a h o m o g e n e o u s  f i l t e r  does  not change  
Eq.  (1.6) ( see  Append ix  2). 

The  r e s i s t a n c e  of th in  f i l t e r s  i n h o m o g e n e o u s  w i th  r e s p e c t  to c~ i s  d e t e r m i n e d  by an  e x p r e s s i o n  of 
t ype  (1.6) in w h i c h  we use  in  p l a c e  of  the  h y d r o d y n a m i c  p a r a m e t e r s  k < ~ > ~)and ~o ( < ~ > 7 ) ,  r e s p e c t i v e l y ,  
the  p a r a m e t e r s  

k '  (<cO7, cl, c2) = - - 0 . 5 c l  In  (<a>7)  -[- (~>7  - -  0.25<a>~7 ~ - -  0 ,75el  -~ e2 

~' (<a> 7, c~) = -- <~>7 + 0.5<u>~7 ~ § 0.5c~ (1.9) 

The coefficients c I and c 2 are practically constant quantities for filters with the same character of 
inhomogeneities. To calculate these coefficients we must know either the probability-density function of 

for an arbitrary volume V of the filter or the experimental values of the fil ter 's  resistance for two dif- 
ferent <~> (the parameter <a> changes when porous material is squeezed). Good specimens of glass-fiber 
filters are characterized by coefficients 

1 ~ c i ~ . 1 . 2  , 0 ~ c~ ~ 0 . t 4  

2 .  E x p e r i m e n t  a n d  R e s u l t s  

1 ~ We m e a s u r e d  the  p r e s s u r e  d rop  dur ing  f low of a i r  of v a r y i n g  de ns i t y  t h r o u g h  p o l y d i s p e r s e d  f i -  
b r o u s  f i l t e r s  and  t h r o u g h  m o d e l  f i l t e r s  c o n s i s t i n g  of p a r a l l e l  c y l i n d e r s  of the  s a m e  r a d i u s .  The  f i b e r s  in 
the  m o d e l  and  r e a l  f i l t e r s  w e r e  o r i e n t e d  p e r p e n d i c u l a r  to the  m e a n  f low v e l o c i t y  v e c t o r .  

The radii of the fibers in the glass-fiber filters had an approximately lognormal distribution with 
parameters 

< ( lg  a - -  l g  a')2> = 0.2343, l g  a '  = - -  3 .85  

The  q u a n t i t i e s  <(~> = 1.57 �9 10-4 and  < a2> =2 .87  �9 10 -8 w e r e  d e t e r m i n e d  by d i r e c t  c a l c u l a t i o n  of the  r e -  
s u i t s  of 160 m e a s u r e m e n t s  of the  t h i c k n e s s e s  of i nd iv idua l  f i b e r s .  
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The model f i l ters  were  made up of 11-12 round f rames  of thickness h i on which wires  coated with 
insulating lacquer  were  s t re tched paral le l  with spacing h 2. In putting the f rames  together we were not con- 
cerned  with obtaining a s taggered or co r r idor  spatial s t ruc ture ;  it was only necessa ry  that all wires  in the 
model were  paral le l  to each other.  For  all models the rat io hi /h 2 = 1. 

The g lass - f ibe r  and model f i l ters  had a frontal surface of 3 and 28 cm 2, respect ively .  

The p re s su re  drop on the f i l ters  was measured  by a mic romanomete r  with a sensitivity of 2 �9 10-5 to r r .  

2 ~ In the p re s su re  region where (1.1) holds true, the experimental  data in coordinates u/Ap, 1/p for 
each f i l ter  lay on a s traight  line, and f rom the graphs obtained we then calculated the values of A 0 and B 0. 
The measuremen t  resu l t s  are  presented  in Table 1. The theoret ical  value of A was calculated by Eq. (1.2); 
in calculating A for the models the quantity h a / v a  2 in (1.2) was rep laced  by N/h2, where N is the number 
of f r ames  in the model.  

The coefficient a was calculated by Eq. (1.8) for each experimental  value of B o. 

In Table 1 the l inear  pa r ame te r s  are  expressed  in cent imeters ,  and p r e s s u r e  in mi l l imeters  of m e r -  
cury.  

3 ~ . In the exper iments  with g la s s - f ibe r  f i l ters  the experimental  points did not deviate f rom the ave r -  
age l inear dependence u/Ap, 1 / p  by more  than 2% in the interval 0 <- l/< a> <- 3 and by more  than 4% in the 
interval  0 <- l/< a > <- 12 (2% is the experimental  e r ro r ) .  

For  the model f i l ters  the corresponding values of max l/<a > are  one- th i rd  as much, possibly owing 
to the smal le r  accuracy  of the exper iments  at smal l  p. Thus, for the investigated f i l ters  the dependence 
(1.6) obtained under the condition ~--* 0 descr ibes  formal ly  the experimental  resu l t s  for finite values of ~, 
penetrat ing into the t ransi t ional  region of flows. For  a single cylinder the region of existence of slip flow 
is es t imated [10] as 0 <- l/a <- 0.2. 

4 ~ The constancy of the calculated values of ~ for the model and rea l  f i l ters  in the region 0.0057 
<-a <- 0.05 indicates a regula r  functional dependence of B on ~ in (1.8). The concrete  values of a, equal 
to 0.7 for lacquer and 0.78 for g lass ,  differ f rom the corresponding values 0.79 and 0.89 given in [10]. This 
is re la ted,  f i rs t ,  with the fact  that Kuwabara ' s  model probably does not give a suitable l inear numerical  
coefficient of ~ in (1.6) and~ second, with the use of different numerical  coefficients in determining ~ itself.  

For  the exper iments  we selected the mos t  homogeneous g lass - f ibe r  f i l ters  having the best  agreement  
between the theoret ical  and experimental  values of A. We note that according to (1.9) the pa ramete r  B is 
less  sensit ive to inhomogeneity of the f i l ters  than A, and therefore  in est imating a a correc t ion  for inho- 
mogeneity was not made.  

Appendix 1. The experimental  resul t  (1.4) signifies that in the model polydispersed fan fi l ter,  f ibers 
with different d iameters  experience,  on the average,  the same force f rom the flow per  unit length. In other 
words ,  in Kuwabara,s problem [3], solved for a polydispersed sys tem of cyl inders ,  the rat io a /b  should 
remain  constant for any a, where b is the radius of a concentr ic  f iber of an imaginary cylinder on whose 
surface Kuwabara placed external  boundary conditions. According to (1.4), for ~ = 0 

b ~ a (~  <a)~/205 <a~)) 'A 

We extend this resul t  to slip flow (provided that a par t  of the thinnest f ibers in the f i l ter  does not 
enter  the region of intermediate  or molecular  flow). For  a << 1 the condition of equality of forces  on f ibers 
of different d iameters  is wri t ten in the fo rm 

a2 a 2 
+ ~ = const 

and the condition of constancy of the f i l t e r ' s  geomet ry  is writ ten accordingly in the fo rm 

<b ~ (a,  ~)) : n <a2) 2 / 2c~ <a)  ~ 

Expanding the f i r s t  express ion relat ive to b, then using the second express ion for determining const, 
and, finally, summing the force obtained on the entire length of the f ibers  per  unit surface of the f i l ter ,  we 

obtain (1.6). 
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Appendix 2. Le t  be given a thin f i l ter  with an infinite surface  and p a r am e te r s  h, <~>, <a>, <a2>. We 
isolate  in i t  vohu~e V in the fo rm of a washer  of radius  r and height h whose bases a re  para l le l  to the sur face  
of the f i l ter ing mater ia l .  If the f i l t e r  consis ts  of infinite rec t i l inear  f ibers ,  the fluctuations of density 
in this washer  under the conditions (m i -  <m>)3/<m> 2-~ 0 and m - -  :r a re  determined by the express ion  

Prob (al ~< a < a~ I V, <~.>} = 0 5 [~ (Y-~,_+o.~) -- cp (Y~,-o.s)] 
~t ,2,'].~ (--x 2 ) m / ~ -  0 .5  - -  <TYb> 

0 

Here  < m >  is the average  number  of f ibers  in tersec t ing  V, the coefficient  ~ =1 is for  homogeneous 
f i l te rs  and ~r > 1 is for  f i l t e rs  with a small  deviation f rom homogeneity.  

For  a given p r e s s u r e  drop Ap on the f i l te r  the local  mean  veloci ty of the gas f lowu'  through the washer  
is es tabl ished with considera t ion of the effect  of the veloci ty  u of the adjacent  gas flow through the sect ion 
of the f i l te r  adjacent to the washer  (this ef fect  is considerable  only for  a packing density of the washer  ~ -*  
0). To determine u' we can wri te  the following express ions :  

@ = 8 ~ r ~  (u' - -  u) +4@~u'  / <a% k (a~') 
u = @ <a2> k (<a>'~) / ~t~h <~>, r >~ Z' 
t' = u 2 <as> (i -- <a>) / 4 <a> <a> 

Here  l '  denotes the mean f ree  path of a ray  in the pores  of the f i l te r  in a plane para l le l  to the f ibers .  
Calct~ation shows that the flow veloci ty  through the washer ,  averaged  with r e s p e c t  to all  f luctuations of 
~,  exceeds  the value of u only by thousandths of a percen t  if we consider  the coeff icient  ~4 = 1. 
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