RESISTANCE OF FIBROUS FILTERS IN A SLIP FLOW

Yu. M. Glushkov

The results of experiments on measurement of the resistance of glass-fiber filters and model filters
made of parallel cylinders to the flow of rarefied air are described. The experimental data are compared
with Kuwabara's theory [3]. This comparison permits calculating the momentum exchange coefficients of
gas molecules with the surface.

1. It was shown in [1, 2] that in the region of self-preserving slip flow the resistance of fibrous fil-
ters Ap as a function of the pressure of a gas flow p is described by the equation
Ap B \-1
T=A(1+7) (1.1)

where A and B are constants for a given filter and given gas, u is the velocity of the gas flow in front of
the filter.

The functional dependence of the parameter A on the physical characteristics of the filter and gas
flow was studied in [3-5].

It was found that
A = bdpha [ <@k (oy), k(ay) = — 0.51n ay 4 ay — 0.25a%? — 0.75 (1.2)

Here h is the thickness of the filter, a is the radius of the fiber, a is the portion of the filter volume
occupied by fibers, p is the viscosity, and v is a structure coefficient.

In conformity with [3, 5]
=1 (1.3)
for a homogeneous system of parallel cylinders and
7= 2<a?/ n {a® (1.4)
for a polydispersed fan model* (the angular brackets denote averaging).

It is considered [5] that the fan model is a good approximation to real homogeneous filters, the fibers
in which are arranged randomly and homogeneously (equivalently) in parallel planes normal to the vector
of the mean flow velocity.

Following [3, 6, 71, we can write the theoretical expression for resistance of a monodispersed filter
whose fibers experience a Kuwabara slip flow in the form

Ap ¢ 14 28e~t 1
=4 JU F 280 [1 9@ en)]f (1.5)

u
where ¢(ay)=—ay+0.5a%2+0.5, £ is the slip coefficient, and A is defined in (1.2).

*A. A. Kirsh, Investigations in the Field of Fibrous Aerosol Filters, Dissertation for Candidate of Chem-~
ical Sciences Degree, Moscow, 1968.
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TABLE 1. Experimental Data on the Resistance of Model
and Glass-Fiber Filters

a N ro | <ay-10t Be Ay 104 A0 s

0.0057 | 12 85 0.627 0.540 | 0.562] 0.7

0.0178 11 85 0.885 1.54 1.47 0.697

0.048 12 85 1.25 5.0 5.07 | 0.705

0.376 11 175 1.82 90.8 41.6

0.00762 0.338 | 4.57 | 22.5 244 244 0.77

0.0171 0.154 | 1.57 | 28.8 284 310 0.79

For ga"l—» 0 Eq. (1.5) is simplified and as applied to polydispersed filters has the form (see Appen~
dix 1)

Ap 4uha 7 <ad> @ (ay) }—1
v = @ ken LT E S k) (1.6)

Equation (1.6) is outwardly similar to empirical expression (1.1) and reveals the functional depen-
dence of B on the physical characteristics of the filter and gas flow.

The slip coefficient of gas ¢ near a flat wall was estimatedin a number of works [8, 3]. For a gas
model of solid elastic spheres it was found that
£ = (2071 — 1) 1.09:
1= pi/0.499 pc, c = (2kT [ m)'l? 1.7
Here p is the gas density, k is the Boltzmann coefficient, T is temperature °K, m is the mass of the
gas molecule, and ¢ is the momentum-exchange coefficient [10].

For a real gas, according to [11], the numerical coefficient in {1.7) should be within 1.09-1.18, where
the value 1.18 corresponds to a gas of Maxwellian molecules [9]. If we assume that (1.7) holds true for a
real gas near a cylindrical surface, then constant B in (1.1) will have the form

/2 <a> @ (o7)
B=K?_1)2'18 lopoai;m (1.8)

where p; is the pressure for which I, is calculated by (1.7).

We need note that consideration of fluctuations of the porosity of a homogeneous filter does not change
Eq. (1.6) (see Appendix 2).

The resistance of thin filters inhomogeneous with respect to « is determined by an expression of
type (1.6) in which we use in place of the hydrodynamic parameters k< «>vy)and ¢ (<a>y), respectively,
the parameters .

k" (e, €1, ) = —0.5¢5 In (Kapy) - <ody — 0.25<a>2y® — 0,75¢y + ¢
Q' (Kady, ¢1) = — <ady + 0.5<oy2y? + 0.5¢; (1.9)

The coefficients c; and cy are practically constant quantities for filters with the same character of
inhomogeneities. To calculate these coefficients we must know either the probability-density function of
a for an arbitrary volume V of the filter or the experimental values of the filter's resistance for two dif-
ferent <a> (the parameter <a> changes when porous material is squeezed). Good specimens of glass~fiber
filters are characterized by coefficients

1K <12, 06,044

2. Experiment and Results

1°. We measured the pressure drop during flow of air of varying density through polydispersed fi-
brous filters and through model filters consisting of parallel cylinders of the same radius. The fibers in
the model and real filters were oriented perpendicular to the mean flow velocity vector.

The radii of the fibers in the glass-fiber filters had an approximately lognormal distribution with
parameters

{(lga— lga)? = 0.2342, lga' = — 3.85

The quantities <a>=1.57-10-4 and <a2>=2.87-10"8 were determined by direct calculation of the re-
sults of 160 measurements of the thicknesses of individual fibers.
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The model filters were made up of 11-12 round frames of thickness hy on which wires coated with
insulating lacquer were stretched parallel with spacing hy. In putting the frames together we were not con-
cerned with obtaining a staggered or corridor spatial structure; it was only necessary that all wires in the
model were parallel to each other. For all models the ratio hy/hy=1.

The glass-fiber and model filters had a frontal surface of 3 and 28 em?, respectively.
The pressure drop on the filters was measured by a micromanometer with a sensitivity of 2 - 10-5 torr.

2°. In the pressure region where (1.1) holds true, the experimental data in coordinates u/Ap, 1/p for
each filter lay on a straight line, and from the graphs obtained we then calculated the values of A, and By.
The measurement results are presented in Table 1. The theoretical value of A was calculated by Eq. (1.2);
in calculating A for the models the quantity hoi/ra? in (1.2) was replaced by N/h,, where N is the number
of frames in the model.

The coefficient o was calculated by Eq. (1.8) for each experimental value of Bj.

In Table 1 the linear parameters are expressed in centimeters,and pressure in millimeters of mer-
cury.

3°. In the experiments with glass-fiber filters the experimental points did not deviate from the aver-
age linear dependence u/Ap, 1/p by more than 2% in the interval 0 =I/<a>=3 and by more than 4% in the
interval 0 =1/<a>=12 (2% is the experimental error).

For the model filters the corresponding values of max I/<a> are one-third as much, possibly owing
to the smaller accuracy of the experiments at small p. Thus, for the investigated filters the dependence
(1.6) obtained under the condition £¢— 0 describes formally the experimental results for {inite values of ¢,
penetrating into the transitional region of flows. For a single cylinder the region of existence of slip flow
is estimated [10] as 0s1/a=0.2.

4°, The constancy of the calculated values of ¢ for the model and real filters in the region 0.0057
=¢ = 0.05 indicates a regular functional dependence of B on @ in (1.8). The concrete values of o, equal
to 0.7 for lacquer and 0.78 for glass, differ from the corresponding values 0.79 and 0.89 given in [10]. This
is related, first, with the fact that Kuwabara's model probably does not give a suitable linear numerical
coefficient of ¢ in (1.6) and, second, with the use of different numerical coefficients in determining § itself.

For the experiments we selected the most homogeneous glass-fiber filters having the best agreement
between the theoretical and experimental values of A. We note that according to (1.9) the parameter B is
less sensitive to inhomogeneity of the filters than A, and therefore in estimating o & correction for inho-
mogeneity was not made.

Appendix 1. The experimental result (1.4) signifies that in the model polydispersed fan filter, fibers
with different diameters experience, on the average, the same force from the flow per unit length. In other
words, in Kuwabara's problem [3], solved for a polydispersed system of cylinders, the ratio a/b should
remain constant for any a, where b is the radius of a concentric fiber of an imaginary cylinder on whose
surface Kuwabara placed external boundary conditions. According to (1.4), for =0

b= a (@ <a>¥/ 20 )l

We extend this result to slip flow (provided that a part of the thinnest fibers in the filter does not
enter the region of intermediate or molecular flow). For a <« 1 the condition of equality of forces on fibers
of different diameters is written in the form

2 2 2 2 £
k (‘Z?) [1 + 269 (%‘) / ak (-Z—Z)] ~—05In (%) — 0.75 + —~ = const
and the condition of constancy of the filter's geometry is written accordingly in the form
(B2 (a, £)> = m{ah?/ 2a (a)?

Expanding the first expression relative to b, then using the second expression for determining const,
and, finally, summing the force obtained on the entire length of the fibers per unit surface of the filter, we
obtain (1.6).
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Appendix 2. Let be given a thin filter with an infinite surface and parameters h, <a>, <a>, <a’>. We
isolate inif volume Vinthe form of a washer of radius r and height h whose bases are parallel to the surface
of the filtering material. If the filter consists of infinite rectilinear fibers, the fluctuations of density «
in this washer under the conditions (mj- <m>)?/<m>?~ 0 and m—« are determined by the expression

Prob{oy Ca<as|V, 0} =05{D (y,, .10 50— D, o 5]

' s — m, 0.5 — (m)
-] (= e
0

)4 ngza = Ve
my = QaiV ] n?r <a®

Here <m> is the average number of fibers intersecting V, the coefficient 4 =1 is for homogeneous
filters and w > 1 is for filters with a small deviation from homogeneity.

For a given pressure drop Ap on the filter the local mean velocity of the gas flow u' throughthe washer
is established with consideration of the effect of the velocity u of the adjacent gas flow through the section
of the filter adjacent to the washer (this effect is considerable only for a packing density of the washer o —
0). To determine u' we can write the following expressions:

Ap = Spkr‘? (u" ~— u) -Mphaw’ [ <a® k{ay)
= Ap {a® k a3y} [ 4ph o), r > '
V= q2da® (1 — {ay) [ 4<a) (o

Here I'denotes the mean free path of 2 ray in the pores of the filter in a plane parallel to the fibers.
Calculation shows that the flow velocity through the washer, averaged with respect to all fluctuations of
«, exceeds the value of u only by thousandths of a percent if we consider the coefficient 1 =1.
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